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SUMMARY 

In assays for hormone receptors, the two parameters (appearing in the Michaelis-Menten equation) 
lo be estimated are the total number of binding sites, and the dissociation constant. This has resulted 
in at least three estimation methods which convert the problem to straight line fitting. T’he latest 
of these, known as the direct linear plot, is the subject of this study. Up lo now, it has been used 
in the absence of the appropriate statistical theory, and hence any attempts at providing standard 
errors of the estimates, or confidence intervals, have been wrong. The direct linear plot is an attractive 
estimation procedure since it essentially ignores “wild” points, yet gives virtually identical results to 
classical least squares methods when the points are “well-behaved”. It is this robustness that makes 
its underlying structure worthy of attention. 

INTRODUCTION 

Most techniques routinely employed to measure tis- 
sue levels of hormone receptors, particularly steroid 
hormone receptors, involve the incubation of various 
concentrations of labelled and u&belled hormone 
with receptor protein. This provides a series of values 
for the amount of hormone bound at each incubating 
concentration of the hormone. A graph may then be 
drawn from these values, and from this graph esti- 
mates can be obtained not only of the number of 
hormone receptor sites, but also of the dissociation 
constant for the hormone-receptor interaction. Such 
a graph is described by the Michaelis-Menten equa- 
tion : 

BmaxF B=- 
K. + F’ 

where B and F are the bound and free levels of hor- 
mone at a particular incubating concentration, often 
expressed in terms of fmol/mg protein, B,,, is the 
total number of binding sites, and K1, is the dissoci- 
ation constant for the hormone-receptor interaction. 

The values for B,,, and Ko may be obtained from 
a plot of bound hormone (B) against free hormone 
(F) from the observations (F,, B,), (F2. B2), . . . , (F,, 

Bn). 
Two further ways of writing equation (1) are 

(BP’) = (B,,,lK,) - (B/K,), (2) 

a transformation introduced by Scatchard[8], and 

U/B) = (l/B,,,) + (K,IB,,,)(lIF), (3) 

which is attributed to Lineweaver and Burk[7]. 
Clearly, fitting a straight line to n data points and 
estimating the slope and intercept of the straight line 
are tasks better suited to routine laboratory work, 

than fitting and estimation for the hyperbola given 
by equation (1). The plot of points (B,, BJF,), (B2, 

Bz/FA . . . , (B,,, B JF,) is known as a Scatchard plot, 
this being the most common plot used in steroid- 
receptor assay. The plot of points (l/F,, l/B,), (l/F,, 

l/B,), . . . , (l/F,, l/B,) is known as a double reciprocal 
plot. Their respective connections with equations (2) 
and (3) should be obvious. 

A plot introduced by Comish-Bowden and Eisen- 
thal[Z], namely the direct linear plot, is a third tech- 
nique for those who wish to exploit the comparative 
ease of drawing a straight line. Subsequently Eisen- 
thal and Comish-Bowden[3] gave statistical implica- 
tions for the direct linear plot in an enzyme kinetic 
context, while Woosley and Muldoon[l3] did a simi- 
lar thing for a steroid-protein interaction. 

The purpose of this paper is to look critically at 
these techniques of data representation, to observe 
that certain implications of the direct linear plot have 
been missed, and to give solutions to hitherto un- 
answered statistical problems associated with these 
plots. To be more specific, consider the data of 
Table 1 obtained from an estrogen receptor assay of 
human uterine cytosol fraction. The data is given in 
the convenient form of B, B/F; its Scatchard plot is 
presented in Fig. 1. Notice that the observation (B12, 
B,,/F, *) in the bottom right hand comer looks very 
much like an outlier: i.e. an observation which is to 
be given little weight or credence. The usual way td 
estimate a and /I in, E/F = a + BB is via the method 
of least squares. This results in, tl = 1.247, /3 = 
-0.022. So B,,, = a/(-& = 57.98, K, = l/(-j_?) 
= 46.43. 

Least squares is an excellent method of estimation 
when only the dependent variable contains error, and 
when the error does not result in outlying points. If 
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Fig. 1. Scatchard plot of data obtained from an estrogen 
receptor assay of human uterine cytosol fraction. On the 
ordinate is the ratio of bound (B) to free (F) hormone 
found at particular incubating concentrations of the hor- 
mone, while on the abscissa is the amount of hormone 
bound, expressed as fmol [‘HI-estradiol bound/mg cytosol 
protein. The values for the points are found in Table 1. 
The lines on the graph represent the least squares line 
on all 12 points (-) (B/F = 1.247 - 0.022 B), the least 
squares line with the outher removed (- --) 
(B/F = 1.726 - 0.037 B), and the direct linear plot (. . . . .) 

(B/F = 1.484 - 0.031 B). 

one data point is completely atypical (for example, 
due to a temporary aberration in one of the measur- 
ing devices), then it grossly affects the estimates. We 
really should remove the “wild” point and estimate 
B,,, and KD from the remainder. This involves the 
thorny problem of identifying the outlier. Altema- 
tively, we could take the approach of looking for a 
different estimation procedure, one that is affected in 
only a small way by wild points. These are known 
as robust estimation procedures; see Huber[5]. This 
was indeed the motivation of Comish-Bowden and 
Eisenthal[2] when they introduced the direct linear 
plot. Returning to Fig 1, the full line represents the 
least squares line, the dashed line is the least squares 
line with the outlying point (66.1, 0.232) removed, and 
the dotted line is obtained from the direct linear plot. 
Note how close the last two lines are to each other. 
The direct linear plot gives estimates, 

B mar = 47.97, KD = 32.32, 

which are to be compared to the now reliable least 
squares estimates based on all but the outlier: 

B mal = 47.07, K,, = 27.27. 

Of course, statistical estimation does not stop at 
just giving estimates; it must also provide us with 
standard errors of these estimates. Up to now, those 
who have written on the direct-linear-plot procedure 
have failed to adequately consider this equally impor- 
tant halfof estimation theory. We will show in section 2 
that the direct linear plot, although presented by 
Cornish-Bowden and Eisenthal[2] as a graphical 

technique, gives estimates that could equally be de- 
rived from a robust regression procedure known in 
the statistics literature for some time (Theil[12]). This 
hitherto unnoticed underlying structure not only 
allows a simple computational procedure to be set 
up, but more importantly, gives us the framework 
within which we can provide standard errors and so 
complete the estimation commitment. The subsequent. 
parts of section 2 give the necessary theory. Section 3 
presents illustrative examples, and finally, discussion 
and conclusions are given in section 4. 

2. THE DIRECT LINEAR PLOT 

2(a) The underlying structure 

The equation describing the direct linear plot is 
a rearrangement of the Scatchard equation: 

B max = B + (B/F)K,. (4) 

For each observation (F, B,), a straight line can be 
drawn in the parameter space (i.e. KD, B,,, space), 
with slope BI/Fi and intercept BI. Consider the inter- 
section point of the two lines defined by the observa- 
tions (Fi, BJ and (Ffi 83. Woosley and Muldoon[13] 
show that it is given by 

KD = (Bj - BJ/{(Bi/FJ - (Bj/F,)) (5) 

B mm = (Fi - f’#((Fi/Bi) - (FjlBj)) (6) 

For n data points, there are $n(n - 1) such values 
for KD and B,,,, obtained by counting the number 
of pairs of distinct lines (i.e. the number of (i, j) such 
that 1 I i c j I n). The direct linear plot estimate for 
KD is then the median of the &r(n - 1) values for 
K,. Similarly, the direct linear plot estimate for B,,, 
is the median of the &r(n - 1) values for B,,,. 

However there remain problems associated with 
the use of the direct linear plot. Firstly the name 
“direct linear plot” is inappropriate, since in practice 
it is very time consuming to draw n straight lines in 
the parameter space, let alone to study the $r(n - 1) 
intersections. For n = 10 data points, there are 10 
straight lines to draw, and 45 intersections to look 
at. Rather, one would directly calculate the values 
given by Eqs (5) and (6) and extract the medians 
from these values. To determine if the estimates are 
valid, one should see how Eq. (1) (or even (2) or (3)) 
fits the data; it is at this stage that a plot is required. 

Secondly, the interpretation of the parameter esti- 
mates given by Eisenthal and Comish-Bowden[3] 
and Woosley and Muldoon[13] in terms of medians 
of intersection points has in fact directed attention 
away from their real nature. In fitting a straight line 
of the form y = a + 6x to the points (xi. y,), (x2, 
Y*), . . .V (x.9 Y”X we naturally ask how we can choose 
a and b to provide a suitable fit to the points? The 
following estimator for b was introduced by 
Theil[ 121, and more generally investigated by Sen[9]. 
Firstly we compute, 

Sij = (Yi - YjMxi - Xj), for i < j. 
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That is, for any two points, st, is the slope of the The error, denoted here as e, accounts for the differ- 
line joining them. Theil proposed that ence between the observed points and the (unknown) 

b = median of the )n(n - 1) sij values. 
straight line relationship between y and x. Thus, 

In the Scatchard plot (I$, BJF,), Theil’s value for 
Y=a+flx+e, (8) 

the slope b in the plot of, where we use Y instead of y to denote that it is a 

B/F = a + bB 
random variable. Therefore the data is assumed to 

becomes: 
satisfy: 

b = median of sii values, yi = tl + /3Xi + ei (i = 1,. . , tl) 

where now, 

sij = I(BiIF,) - (BJF,))/(Bi - Bj). 

Thus from equation (2), 

1 -- = 
KI, 

median of [siji 

At some point, one has to specify the nature of 
the randomness, and this is usually done by prob- 
ability statements: 

Pr{Y;<y}=G&--_-flxJ (i=l,...,n), (9) 

where the cumulative distribution functions GI, Gz, 

= median of (l/sij) ’ 
. . . , G, will be specified and determined by the experi- 
menter’s knowledge of the types of errors which might 

Therefore, occur. Usually the n experiments are performed under 

KI, = median of ( - I/sij) identical conditions so that one can assume that 

= median of ((Bj - Bi)/[(Bi/Fi) - (BjFJ]) . 
G1 = G, = . . . = G, = G. Most often the form of G 
can be assumed to be that of a normal distribution, 

A comparison with Eq. (5) shows this to be the direct and under this assumption the least square estimates 

linear plot estimate. In reality then, this estimate is of a and /3, obtained by minimising: 
immediately derivable from Theirs robust estimate of 
slope obtained from the Scatchard plot. 

A similar result is found for the estimate of B,,, 

ij (yi - a - Bxi)'3 (10) 

given by Eq. (6), as we now demonstrate.. Another with respect to tl and /3, are the minimum variance 

linear plot rarely used in the analysis of hormone- unbiased estimates (Sen[9]). Typically though, as 

receptor interactions comes from a further way of re- Huber[S] has pointed out, such a normal distribution 

writing equation (1): assumption is not realistic, and the types of errors 

F/B = (KI&,,,) + (l/&,,)F 
that should be allowed for are those which produce 

(7) larger (positive or negative) values than the normal 

Theil’s estimate of the slope is given by distribution. Unfortunately, in these cases, the least 

l/B,,, = median of IC(F&) - (F~/~jW(F~ - FJL 
squares estimates of Eq. (10) perform extremely 
poorly. This had led to a recent development in stat- 

and hence, istics, known as robustness; which is the search for 
statistical procedures which remain near optimal for 

B nlax = median of {(F, - FJWJBJ - (Fj/BJlI slight departures from normality. Moreover, when 

A comparison with Eq. (6) confirms that the direct one real&es that the form of the distribution function 

linear plot estimate of B, is immediately derivable G is in reality often unknown, robust procedures are 

from the robust slope-estimate of the (rarely used) plot even more deserving of attention. 

of F/B against F. Our aim in this section is to provide suitable robust 
estimates for a and B, which remain valid for a broad 

2(b) Straight line regression class of G. We follow closely the work of Sen[lO]. 

The problem, very simply stated, is to estimate par- In the general case, suppose for each xI (assume 

ameters a and b that give a “good” straight line fit, without loss of generality that x1 < x2 < . . . x,) there 

y=a+bx 
are n, observations xl, . . . , k&., such that, 

(j = 1,. . .,n,; i = 1,. . ., 4. 
to data points (x,, yI), (x2, y2), . . . , (x., y,). If statisti- 

&, = a + fix, + erj 

cal techniques are to be used, thus allowing reference 
and 

k 

to such powerful notions as unbiasedness, standard 
errors and confidence intervals, then a clear statement 

n= Cni 
i=, 

should be made about the statistical assumptions in- 
volved. The first assumption is that the x, values are 

is the total number of observations on the y-variable. 

observed without experimental error; for this reason 
Sometimes, for example, all experiments are performed 
in duplicate, and then ni = 2, and n = 2k. Now detine 

the x-variable is often called the control variable, or the W-values by: 
explanatory variable. The y-variable, however, is 
assumed to be observed with error. In statistical terms W;,.,. = (u,, - Y&(x, - Xi) 

it is called a random variable. (1 < r < n,; 1 < s < n,) (11) 
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for 1 Gi<j<k.Also,let 

N = 1 <zjclr ninj . . 

be the total number of W-values. If the N values in 
Eq. (11) are arranged in ascending order of magnitude 
and denoted by, 

u;,, G VV&) < ‘.. < Tt;N), 

then the desired estimate of /I in Eq. (8) is 

p* = 

I 

&n+l) 
flV+&, + &nil,! 

;;; 1;; + l. (12) 

where m is a non-negative integer. Now this is pre- 
cisely the median of the N W-values given by Eq. 
(1 l), and is exactly the estimate upon which the direct 
linear plot estimates are based (see section 2(a) above). 
Looking at the problem in this slightly more general 
context means that we have avoided the possibility 
of dividing by (xi - xi) when xi = xi, which would 
result in an undefined W-value. 

Now, by subtracting the slope effect, the intercept 
CI is estimated. Define, 

Y$ = Yi, - B* Xi (1 < I < Hi,), (13) 

for 1 < i ,< k. For the n Y*-values in Eq. (13), the 
N* = $I@ + 1). mid-ranges are defined by: 

Fj,,J = +{ YE + Y$] (1 C r < PIi; 1 < S < Plj), 

for 1 < i <j < k, and: 

Fi,rs = i_{ Yt + YE} (1 < r < s < ni),, 

for 1 < i < k. Note that the V/-values have been 
defined in such a way that there is no doubling-up 
on a value. For example, VZl,rs is not allowed since 
it is taken care of by V12,rs, just as hi.21 is taken 
care of by vi. 12. Then the ordered I/-values become: 

r/;I, G qz, G. . . < lqv*,, (14) 

and the desired estimate of CI in equation (8) is 

s(* = 
V (m*+l) ifN* = 2m* + 1 

f[ f$,,.) + ~,,,*+,)) if N* = 2m* 
(15) 

where m* is a non-negative integer. That is, the 
median of the paired averages of the Y*-values is used 
(Adichie [ 11). 

As an example, assume the simple case of ni = 1 
for i = 1,. , k, and hence n = k (this means that 
all the x-values are distinct; i.e. it is not possible that 
xi = xi for some i # j). We revert to using Y,, Y2, 

. , Y,,, and the W-values become: 

(q - x)/(xj - xi) (1 < i < j < n). 

The median of these $n(n - 1) values is the estimate 
/?* of (12). Define, 

r: = x - /P xi. 

Then the I/-values become, 

&j=){Y:+Yi*} (l<i<j<n). 

The median of these i_n(n + 1) values is the estimate 

CI* of (15). Suppose we work with the data of Table 1 
using B as the x-variable and B/F as the y-variable 
(i.e. a Scatchard plot). Then nr = 1; i = 1, . . . , 12, and 
n = k = 12. The W-values of (11) are: 

IV,,, = (1.110 - 1.015)/(18.5 - 17.7) = 0.119 

W,,, = (0.684 - 1.015)/(28.5 - 17.7) = -0.030 

WI,, = etc. 

When these values are ordered, and the median 
obtained, we get /?* = -0.031. The Y*-values of (13) 
are : 

Y: = 1.015 - (-0.031)(17.7) = 1.564 

Y; = 1.110 - (-0.031)(18.5) = 1.684 

Y: = etc. 

and hence we can compute the V-values: 

I’,,, = i(1.564 + 1.565) = 1.564 

V,,, = t(1.564 + 1.684) = 1.624 

Vl,3 = etc. 

When these are ordered and the median chosen, we 
get a* = 1.556. 
Fig. 2 shows the robust straight fine regressions: 

B/F = 1.556 + (-0.031)8, 

superimposed over the data points. 
Having defined the estimates /?* and c(*, there 

remains the necessity of finding their statistical 
properties; e.g. standard errors, confidence intervals, 
etc. The next part of this section does this, followed 
by a final part which corrects the standard error esti- 
mates used by Woosley and Muldoon[13] in the 
direct linear plot. 

2(c) Statistical properties 

Although Woosley and Muldoon[13] and Eisen- 
thal and Cornish-Bowden[3] use statistical reasoning 

B 
Fig. 2. Scatchard plot of the same data as for Fig. 1. The 
line fitted to the points is the robust straight line regression 

where equation is B/F = 1.556 - 0.031 B. 
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to derive direct-linear-plot estimates, there is a need 
for the estimates’ statistical properties. Suppose we 
let, 

7-i = i: rJi(Xi - XJ2. 
k 

where X, = 1 nix& 
i=l i=l 

A,2 = A 

( 
n(n2 - 1) - i; ni(nf - 1) 

i=l 1 

pn = i inimi-i + ni(ni + 1)/2 - ni(n + 1)/2) 
i=l 

X (Xi - -f,)/(TnAn), 

where m,=n,+n,+...+n, (i=1,2,...,n) and 
m0 = 0. Then Sen[9] has shown the following: 

Property 1. If(i) pn is strictly positive, and (ii) T,+ co 
as n+ co, then 

P”w* - B) 

has asymptotically a normal distribution with zero 
mean, and variance given by 

a2(s) = {12(jym gz(x)dx~~l. (17) 

where g(x) is the probability density function of the 
error term e: 

g(x) = G’(x). 

The following conclusions may be drawn: 
(a) /?* is consistent. That is, for large n. /?* approaches 

the true (but unknown) value /3. Sen[9] has also 
shown that the distribution of /I* is symmetrical 
about the true parameter /?. 

(b) /I* has the asymptotic standard error, 

se(B*) = J12p T { n ns_:, g’(x)dx}-‘. (18) 

(c) Confidence intervals (asymptotic) can be con- 
structed for the unknown parameter fi: 

(B* - G/2 .w*b B* + z,,,.se(B*)). (19) 

This is the lOO( 1 - l )% confidence interval for p where 
Z,, is found from the normal tables and is defined 
by that value which solves: 

s 

m 
E/2 = =,,~ (2x)- ‘I2 ,-“I2 dx; 

e.g. E = 0.05 gives Ze,2 = 1.96. 
Property 2. Let tr* be the estimate of t(, given by Eq. 

(15). According to Adichie[l] and Sen and Puri[ 111, 
if (i) p. is strictly positive, (ii) 0 < lim n-‘T2, < 03, 
(iii) llirnX”I < cc. and (iv) lim;max(xj - .%,)‘/Tij = 0 
then 

di2(a* - LX), 

has asymptotically a normal distribution with zero 
mean and variance. 

r2(8) = { l2( s_mp g2(x)dxyr’1 1 + lim[x$r/(T.2p,2)]), 

(20) 

The following conclusions may be drawn: 
(a) a* is consistent 
(b) a* has the (asymptotic) standard error, 

se(a*) = ~;iip.T.~~~g’(x)dx~~‘~~+i:~“. 

(21) 

(c) The lOO(1 -E)% confidence interval for r is 
given by 

(a* - %2 . se(a*), a* + Zri2. se(a*)). (22) 

Expressions (18), (19), (21), and (22) require know- 
ledge of Jmmg2(x)dx. Now the probability density 
function of the errors is often assumed to be normal 
distribution with mean zero and scale parameter 6. 
that is, 

g(x) = (2n6)-1’2 e-x*i2d2. 

Here 

s 
3o g2(x) dx = (2&6)-l. 
-m 

and 6 is usually estimated by. 

,j j$ (Tj - i - Bxd2An - 2). 

Recall however, our reticence in assuming normality, 
since the data is subject to outliers. We need therefore 
an estimate of S”, g2(x) dx. which makes no assump 
tions about the (parametric) form of g; such an 
estimate is given by Sen[9]. Define, 

L, = i 
( 

n(n - 1)(2n + 5) - i nj(nj - l)(2nj + 5) , 

j=l 1 

and. recall that 

Then put 

N = C ninj. 

i<i<j<k 

Ml s N/2 - (1.349)(L )I”/2 n 3 

M2 = N/2 + (l.349)(L,)1’2/2. 

Now the W-values defined by (11) can be considered 
as a sample, which when ordered, give an inter- 
quartile range: 

Q = &M~+I~) - YIM~,,. (23) 

where [x] E largest integer < x. 
Property 3. Under the conditions of Property 1, 

\/3&Q/(1.349), 

is asymptotically the constant, 

s 

ou 
s?x) dx. 

-cu 

The following conclusions may be drawn: 
(a) From (18) se(b*) is estimated by: 

Se(/?*) = :Q/(1.349), (24) 

where Q is given by (23). Then an (asymptotic) 
lOO(1 -e)“/, confidence interval for fi* is got by 
substituting (24) into (19). 
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(b) From (21). se@*) is estimated by: 

ie(a*) = (+Q/1.349){e + i:)Lii. (25) 

Then an (asymptotic) 100 (1 - l )O/, confidence interval 
for CL* is got by substituting (25) into (22). 

For the data presented in Table 1, Q = 0.0214, 
p.’ = 0.8332, 7’; = 1801.5565, js, = 36.7833, and 
hence : 

iee(B*) = 0.0079 and se(a*) = 0.3051. 

Combining this with the estimates /? = -0.0309, and 
a* = 1.5556, gives a 95% (Z,,, = 1.96 in (19)) confi- 
dence interval for j?: 

(-0.0465, -0.0154) 

and a 95% confidence interval for a: 

(0.9576, 2.1535). 

2(d) Standard errors for the direct linear plot 

As we have seen in section 2a, the direct linear plot 
estimate for KD is: 

K; = - l/j*, 

where p is the robust estimate of slope in the Scat- 
chard plot given by (2). Also the direct linear plot 
estimate for B,, is: 

B;,, = l/B**, 

where p* is the robust estimate of slope in the plot 
of F/B against F, given by (7). 

In order to get approximate standard errors for 

K:, and %a,, we therefore need a formula which 
relates se(Kf) to se@*). We refer the reader to Frish- 
man[4], from which we conclude that, 

se(G) = s~(B*)/{E(B*))~, sc(%,,) = se(B**)/{E(B**))’ 
Hence, 

ie(Kt) = ie(/?*)/(j?*}‘, W*,,,) = W**)/V**l*, 
(26) 

Kg = -l/j?*, B$,, = l/B**. 

Equations (26) summarize what one needs to know 
about the estimation of KD and B,,. For the data 
of Table 1, we have already seen that j?* = -0.0309, 
&(/3*) = 0.0079, and hence Kz = -l/( -0.0309) = 
32.324, together with &(K$) = (0.0079)/(-0.0309)* = 
8.2915. Similarly, by converting Table 1 from (B, B/F) 
points, to (F, F/B) points, we can go through exactly 
the same procedure of sections 2(b) 2(c) to find: 

/?** = 0.0208, Se@**) = 0.0009, 

and hence Bz,, = 47.9719, together with ;e(B&) = 
2.1653. 

Unfortunately, the formula for calculation of stan- 
dard errors given by Woosley and Muldoon[l3], 
P.627, is wrong. By using that formula they implicity 
assume that their direct linear plot estimates are least 
squares estimates. 

3. EXAMPLES 

In the course of presenting sections 1 and 2 we 
used the data of Table 1, which were obtained from 
an estrogen receptor assay of human uterine cytosol 
fraction. The nature of the assay is outlined by 
Keightley, Tilley and Cant[6]. The results are 
brought together here, since they illustrate the robust- 
ness of the direct linear plot. They will be given in 
the form: estimate f ie(estimate), for the Scatchard 
plot on all points (see Eq. (2)), for the Scatchard plot 

on all but the outlying point (B12, B12/Ft2), and for 
the direct linear plot (see section 2(a)). Table 2 
contains the Figs. 

The second example works with the data of 
Table 3, which were obtained from an estrogen receg 
tor assay of a second human uterine cytosol fraction. 
Figure 3 illustrates the 12 points plotted, with the 
least squares line, and the direct-linear-plot line 
superimposed. 

The startling thing about the points (B,, BJF,), 
. . , (B12, B12/F12) for this example, is that there are 

Fig. 3. Scatchard plot of data obtained from an estrogen receptor assay of human uterine cytosol 
fraction. Ordinate and abscissa are as for Fig. 1. The data are given in Table 3. The equation describing 
the least squares regression analysis tine (-) is B/F = 0.607 - 0.014B. while that describing the 

direct linear plot (---) is B/F = 0.588 - 0.014B. 
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Table 4. Entries show: estimate + Zejestimate), for two different estimation procedures, using 
the data of Table 3; I?,,, and K, are expressed as in Table 2. 

Least squares on Scatchard plot 43.174 + 4.083 71.176 + 3.992 
Direct Linear plot 42.651 + 1.114 72.572 + 5.723 

no obvious outliers. We therefore expect least squares 
to give excellent estimates of KD and B,,,. The crucial 
question then is: do the direct-linear-plot estimates 
do almost as well? The answer is clearly yes, when 
we look at the numerical results presented in Table 4. 

4. CONCLUSIONS 

Assay results from hormone receptors are most 
commonly expressed as a Scatchard plot, with a 
straight line fitted to the points via least squares 
regression analysis. Often with such assays, one or 
two points lie some distance from a line drawn 
through the remainder; i.e. an inspection by eye might 
choose certain points to be obviously aberrant. 
Generally they represent an error in experimental 
technique or measurement. If a least squares linear 
regression analysis is performed on all points of the 
plot, the values obtained for the number of binding 
sites and for the dissociation constant could be strik- 
ingly different from those obtained if the outlying 
points are ignored; the first example of section 3 illus- 
trates this point. While some outlying points justifi- 
ably can be ignored, often this task is rather arbitrary. 
In this paper, the use of a robust technique of linear 
regression analysis is examined. This does not require 
agonizing decisions about whether to reject or not, 
since it automatically gives little weight or credence 
to unusually “wild” points. Further, it still has validity 
when both the dependent and independent variables 
contain error ([ 133). A final requirement of the robust 
analysis is that if all the points are “well-behaved”, 
then its resulting estimates should be almost identical 
to the estimates from the least squares analysis; the 
second example of section 3 confirms this. 

This paper supports a recent suggestion that an 
analysis known as the direct linear plot, could be use- 
ful in analysing results from hormone receptor assays 
(Woosley and Muldoon[13]). The underlying struc- 
ture of the direct linear plot is exposed here, enabling 
a thorough investigation of the estimates. These are 
more robust than standard least squares estimates, 
in that they are very much less affected by outlying 
points; this in turn flows on to estimates of the error. 

We suggest that in analysing assay results from 
hormone receptors, the use of least squares in the 
Scatchard plot should be examined more closely. 
Certainly the robust method of linear regression 

represents a marked improvement, and should be 
adopted as routine (perhaps alongside a least squares 
analysis), particularly when outlying points are sus- 
pected. Finally we note that transformations from the 
Michaelis-Menten equation to scales other than those 
used by Scatchard (e.g. see Eq. (7)), have proved to 
be more appropriate in our analyses of hormone 
receptor data. This will be investigated elsewhere. 
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